Relasidari himpunan A ke himpunan B adalah pemasangan anggota himpunan A dengan anggota himpunan B. Relasi antara dua himpunan dapat dinyatakan dengan 3 cara, yaitu : 1. diagram panah; 2. diagram Cartesius; 3. himpunan pasangan berurutan. Mari kita lihat soal tersebut. Relasi yang dapat dibuat dari himpunan A = {4, 9, 16, 25} ke B = {1, 2, 3, 4, 5} adalah Jawab : Darisoal diketahui Relasi dari himpunan A ke himpunan B, dengan Domain A={1,2,3,5} Kodomain B={2,4,6,10} 1 dipasangkan dengan 2 2 dipasangkan dengan 4 3 dipasangkan dengan 6 5 dipasangkan dengan 10 Dari pasangan anggota himpunan tersebut terlihat bahwa anggota himpunan A adalah setengah dari anggota himpunan B. sehingga relasi yang tepat adalah setengah dari. Oleh karena itu, jawaban yang benar adalah B HaloMoeh, kakak bantu jawab ya :) Jawabannya adalah d. "kuadrat dari" Konsep: Relasi adalah suatu hal yang menyatakan kaitan atau hubungan antara 2 himpunan Pembahasan: A = {4,9,16,25} B = {1,2,3,4,5} 4 adalah 2² 9 adalah 3² 16 adalah 4² 25 adalah 5² diperoleh relasi dari himpunan A ke B adalah "kuadrat dari" Oleh karena itu, jawaban yang tepat adalah d. "kuadrat dari" semoga membantu Darigambar terlihat bahwa setiap anggota himpunan A mempunyai tepat satu kawan di himpunan B. Dengan demikian relasi "nomor absen" dari himpunan A ke himpunan B merupakan suatu pemetaan/fungsi. Nah pemetaan seperti itu disebut dengan istilah korespondensi satu-satu. Berdasarkan pemaparan di atas apa pengertian korespondensi satu-satu? Fungsidari himpunan A ke himpunan B adalah relasi yang menghubungkan setiap anggota A dengan tepat satu anggota B. Notasi : f = A → B Rumus : f = x → y ditulis f(x) = y Sebuahrelasi A×A, adalah relasi dari himpunan A kepada A sendiri, mempunyai sifat-sifat berikut: Refleksif Irefleksif Simetrik Anti-simetrik Transitif Di sebut relasi R dari A kepada A sebagai relasi R dalam A. Jenis-Jenis Relasi Relasi Simetrik Relasi anti Simetrik Relasi Transitif Relasi Refleksif Relasi Invers 1. Relasi Invers 1pGiA5. Mahasiswa/Alumni Politeknik Negeri Bandung11 Desember 2021 1251Halo, Fania kaka bantu jawab yaa Jawaban D. "kuadrat dari" Konsep Relasi himpunan Relasi adalah aturan yang menghubungkan setiap anggota himpunan A ke himpunan B. Dimana A disebut domain daerah asal dan B disebut kodomain daerah kawan. Relasi dari himpunan A ke himpunan B adalah hubungan yang memasangkan anggota-anggota himpunan A dengan anggota-anggota himpunan B. Pembahasan Himpunan A = {4, 9, 16, 25} Himpunan B = {1, 2, 3, 4, 5} Anggota A 4 dipasangkan ke 2 pada anggota B maka 4 adalah kuadrat dari 2 9 dipasangkan ke 3 pada anggota B maka 9 adalah kuadrat dari 3 16 dipasangkan ke 4 pada anggota B maka 16 adalah kuadrat dari 4 25 dipasangkan ke 5 pada anggota B maka 25 adalah kuadrat dari 5 Oleh karena itu, jawabannya adalah D. A = { 121, 144, 169, 196}B = { 11, 14,15}Relasi yang mungkin dari A ke B adalah "kuadrat dari"Karena121 adalah kuadrat dari 11196 adalah kuadrat dari 14 Jawaban D A = { 121, 144, 169, 196}B = { 11, 14,15}Relasi yang mungkin dari A ke B adalah "kuadrat dari"Karena121 adalah kuadrat dari 11196 adalah kuadrat dari 14Jawaban D Dalam pelajaran matematika kita mengenal adanya himpunan, dimana dalam masing-masing himpunan tersebut terdapat anggota dan biasanya lebih dari satu domain dan kodomain. Untuk memetakan anggota yang tepat pada himpunan lainnya maka kita mengenal korespondensi satu-satu. Apa yang maksudnya? Korespondensi satu-satu merupakan relasi khusus yang memasangkan setiap anggota himpunan A dengan tepat satu anggota himpunan B dan begitupun sebaliknya. Dengan demikian, banyaknya anggota himpunan A dan himpunan B haruslah sama. Pada hakikatnya semua korespondensi satu-satu termasuk ke dalam relasi, namun sebuah relasi belum tentu bisa termasuk ke dalam korespondensi ini. Ada beberapa syarat untuk bisa disebut menjadi korespondensi satu satu, yaitu himpunan A dan B memiliki banyak sekali anggota yang sama, ada sebuah relasi yang menggambarkan bahwa masing-masing anggota A berpasangan dengan tepat satu anggota B begitupun sebaliknya, dan masing-masing anggota daerah hasil tidak akan bercabang terhadap daerah asal atau begitu pula sebaliknya. Baca juga Pengertian Garis dalam Matematika Jika melihat dari syarata korespondensi satu-satu bahwa banyak anggota domain dan kodomain harus sama maka bisa dirumuskan sebagai berikut Jika n A = nB = n, maka banyaknya korespondensi satu-satu yang mungkin adalah n x n – 1 x n – 2 x … x 2 x 1. Contoh Soal 1 Diketahui himpunan A = {2, 4, 6, 8, 10, 12} dan himpunan B = {1, 3, 5, 7, 9, 11}. Maka tentukanlah berapa banyak kemungkinan korespondensi satu satu yang dapat dibentuk dari himpunan A ke himpunan B ? Penyelesaian Soal Banyak anggota himpunan A dan Himpunan B adalah sama, yaitu 6 maka n = 6. Oleh karena itu, banyak kemungkinan korespondensi satu satu yang dapat dibentuk adalah sebagai berikut 6 x 5 x 4 x 3 x 2x 1 = 720 Maka bisa disimpulkan bahwa terdapat 720 korespondensi satu satu yang dapat dibentuk dari himpunan A ke himpunan B. Contoh Soal 2 Berapakan banyaknya jumlah korespondensi satu-satu yang dapat dibentuk dari himpunan C = huruf vokal dan juga D = bilangan prima yang jumlahnya kurang dari 13 ? Penyelesaian Soal Diketahui C = Huruf Vokal = a, i, u, e, o D = Bilangan Prima yang Kurang dari 13 = 2, 3, 5, 7, 11 Karena n C dan n D = 5 maka untuk jumlah korespondensi satu-satu antara himpunan C dengan D adalah sebagai berikut 5? = 5 x 4 x 3 x 2 x 1 = 120 Maka dapat disimpulkan bahwa jumlah korespondensi satu-satu dari himpunan C huruf vokal dan juga D bilangan prima yang jumlahnya kurang dari 13 adalah 120. Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik. Related Topicsanggota himpunanHimpunanKelas 8Korespondensi satu-satuMatematika

relasi yang dapat dibuat dari himpunan a